高級檢索

納斯達克半導體行業股指統計特性及其神經網絡預測技術研究

Study on Statistical Characteristics Analysis and Neural Network Prediction Method of NASDAQ Semiconductor Industry Index

  • 摘要: 金融時間序列統計特性和神經網絡預測研究對於掌握金融市場發展規律,並指導長期或短期投資行為具有重要意義。采用經驗模態分解(EMD)、時間內稟相關分析(TDIC)和Hilbert譜分析等方法對納斯達克半導體行業股指進行了尺度統計分析,並利用先驗的神經網絡對納斯達克半導體行業股指進行了預測。統計分析發現,各階本征模態函數(IMF)呈現一定的周期性,能譜分析的結果顯示半導體行業股具有統計行為; 利用先驗的神經網絡對半導體股指進行預測,發現半導體行業股指將會在未來一段時間內保持振蕩趨勢,不同的反向傳播(BP)神經網絡預測模型可以有效應對半導體行業長期和短期投資方案,可為投資者提供有效的借鑒。

     

    Abstract: The research on statistical characteristics of financial time series and neural network prediction is of great significance for grasping the law of financial market development and guiding long-term or short-term investment behavior. The NASDAQ semiconductor index was investigated by Empirical Mode Decomposition (EMD), Time-Dependent Intrinsic Correlation (TDIC) and Hilbert spectrum analysis, the NASDAQ semiconductor industry index was predicted by the priori-tested BP neural network method. Statistical analysis showed that IMFs presented certain periodicity. The result of the spectrum analysis showed that statistics behavior could be found in the semiconductor industry index. Eventually, it was found that the semiconductor industry index would keep fluctuating in the near future. Different BP neural network methods could be taken to direct the long-term investigation and short-term investigation. The BP neural network method could provide effective reference to investigators.

     

/

返回文章
返回
摩臣5娱乐专业提供:摩臣5娱乐摩臣5摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖