高級檢索

軸承變轉速多模式下的深度卷積神經網絡診斷方法研究

Study on Diagnosis Method of Deep Convolutional Neural Network under Bearing Variable Speed Conditions and Multi-Mode

  • 摘要: 針對軸承運行轉速🧛🌁、損傷模式復雜多變的情況🏋🏻,傳統的基於特征提取的傳統故障診斷方法的效果不盡如人意👨🏿‍⚖️。提出了一種基於深度卷積神經網絡的軸承變轉速多模式下的診斷方法,以振動原始數據作為網絡的輸入,利用卷積層進行特征提取🉐,池化層進行特征約簡,全連接層和分類器層進行故障識別。在設置合理的網絡結構和參數的基礎上,利用變轉速多模式下的軸承故障數據建立了四分類診斷模型🤰🏼,其對測試數據集的診斷結果準確率達到98.6%,高於BP神經網絡(72.8%)🎹⛵️、支持向量機(76.9%)和淺層卷積網絡(93.1%),表明了該方法的有效性👱‍♀️。

     

    Abstract: In view of bearing speed conditions and damage modes are complex and changeable, and the traditional fault diagnosis methods based on feature extraction are not satisfactory, a novel diagnosis method built on deep convolutional neural network is presented. The original vibration data is used as network input in this method, the convolutional layer of this model is applied to extract the features, then play down the dimensionality of features through the pooling layer, and the full connection layer and the classifier layer are used for fault identification. On the basis of setting reasonable network structure and parameters, the four-classification diagnosis model was established by using the fault data of under variable speed conditions and multi-mode. The diagnostic accuracy of the test sets reached 98.6%, higher than that of back propagation neural network (62.8%), support vector machine (72.9%) and shallow convolutional neural network (93.1%).

     

/

返回文章
返回
摩臣5娱乐专业提供:摩臣5娱乐摩臣5摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖